

Adapt<mark>/</mark>/Ve

Automated Driving Applications and Technologies for Intelligent Vehicles

Andreas Knapp Felix Fahrenkrog Automated Driving Applications and Technologies for Intelligent Vehicles - AdaptIVe 23rd Aachen Colloquium

Aachen October 7th, 2014

// Content

- AdaptIVe
- Automated Driving Functions
- Legal Aspects Response 4
- Evaluation of automated driving functions

// AdaptIVe Facts

Budget: European Commission:

Duration:

Coordinator:

8 Countries:

EUR 25 Million EUR 14,3 Million

42 months (January 2014 - June 2017)

Aria Etemad, Volkswagen Group Research

France, Germany, Greece, Italy, Spain, Sweden, The Netherlands, United Kingdom

Adapt/:/Ve

alcor ect

// AdaptIVe **Project Overview**

Widespread application of automated driving to improve road safety and address inefficiency in traffic flow whilst mitigating the environmental impact of road traffic //

Legal issues, terminology

Automated driving close distance manoeuvring

07/10/2014

Strategies for human-vehicle integration

Automated driving in urban environment

23rd Aachen Colloquium, Aachen

New evaluation methods, impact assessment

Automated driving on highway

//AdaptIVe Motivation for automated driving functions

Zero emission	Reduction of fuel consumption & CO ₂ emission Optimization of traffic flow	
------------------	--	--

Demographic	Support unconfident drivers	
change	Enhance mobility for elderly people	

Vision zero Potential for more driver support by avoiding human driving errors

// AdaptIVe

Targets for Research and Development

- Demonstrate automated driving in complex traffic environments. Test applications in scenarios considering the full range of automation levels.
- Enhance the perception performance by using advanced sensors supported by cooperative and communication technologies.
- Provide guidelines for the implementation of collaborative controls involving both drivers and automation.
- Define and validate specific evaluation methodologies and assess the impact of automated driving.
- Evaluate the legal framework with regards to existing implementation barriers.

// Demonstrators

ultrasonic sensors, radar, cameras Actuators for vehicle control, laser scanner sensors, radar, cameras Actuators, ECUs, on-board sensors, radar, map-based electronic horizon, V2X

// Response 4

Legal issues - Response 4

//Levels of driving automation acc. to SAE

Adapt/:/Ve

	LDW FCW	LKA ACC	Parking Assistance	Traffic Jam Chauffeur	Parking Garage Pilot	Robot Taxi	
	level 0	level 1	level 2	level 3	level 4	level 5	
O T C	No auto- mation	Assisted	Partial auto- mation	Condi- tional auto- mation	High auto- mation	Full auto- mation	

L

Driver in the loop

 No significant change with respect to existing driver assistance systems

Driver out of the loop

- Not in accordance with regulatory law (Vienna Convention, national road law)
- Shared responsibility for control between driver and system
 - ➔ need for action

Source: SAE document J3016, "Taxonomy and Definitions for Terms Related to On-Road Automated Motor Vehicles", issued 2014-01-16, see also http://standards.sae.org/j3016_201401/

// Application domains

TRAFFIC COMPLEXITY

// Challenges Towards a code of practice

Unambiguous and easy to use classification of automated driving functions	>	Group categories of automated driving functions.
Customers expect safe and easy to use functions.	>	Assess technological limits of sensor systems.
	_	
Responsibility to supervise the driving task shifts from driver to system.		New approach to validate safety of functions needed.

Define **steps towards** a safe **introduction** of highly automated driving functions into the market. //

//Legal topics

Determine need for action: allow introduction with acceptable risk

- Current legal situation does not allow automated driving on public roads.
- Conformity of automated driving functions to national law has to be assessed on a country by country basis.
- New risks for the manufacturer resulting from product liability
- Protection against corruption and fraud of vehicle data and V2X data
- Usage and protection of data collected by automated driving functions

// Evaluation

Evaluation framework

// AdaptIVe SP "Evaluation"

- Main objectives:
 - Development of an evaluation framework for automate driving functions
 - Methodology for impact analysis of automated driving applications
- Partners:

07/10/2014

– ika, BMW, CRF, BASt, TNO, CTAG, Lund

//AdaptIVe - Evaluation Approach

23rd Aachen Colloquium, Aachen

Adapt/:/Ve

// Technical Assessment Evaluation Approach

Classification of automated driving functions:

Event based operating

- Function that is only active for a short period in time (typically vehicle stands still at the end or the automat driving ends)
- Examples: Parking, Minimum Risk Manoeuvres

Continuously operating

- Function that is active for a longer period in time (typically vehicle is still moving at the end of an manoeuvre respectively automated driving is continued)
- Example: Highway Pilot

// Evaluation Tools and Methods

Tool	Application	<u> </u>	🖨	
Field Operational T	 Impact assessment in reality Assessment of behaviour/components/systems 	R	R	R
Controlled Field	Assessment of components and systemsAssessment of driver behaviour	RRR	R \	v
Dynamic Driving Simulator	Assessment of driver behaviourHuman machine interaction	RV	v	
Simulation	Virtual layout and assessmentPotential impact assessment	/ v /	v	

R: Real, V: virtual

// Technical Assessment Evaluation Approach

	Event Based Operating	Continuously Operating
Example		
Main focus of the evaluation	Use Case	
Definition of hypotheses	Test Case	Δx Disturbing traffic flow
Definition of test scenarios		Safety limit
Evaluation criteria		 Relevant Situation detected per driven distance / driving time Decide on the severity

23rd Aachen Colloquium, Aachen

07/10/2014

// Safety Impact Assessment Evaluation Approach

- Classical approach for ADAS
 - Scenario based approach
 - Accident data are analysed
 - Certain accidents are reconstructed and re-simulated accident considering function under study
 - Effect is determined by comparison of accident consequences with and without the function
- Approach for automated driving
 - Open issues
 - Today's accident data do not consider collisions of automated vehicles
 - Automated driving function operated already before a critical situation occurs
 - Consider different driving situations and not only accidents
 - Analyse how the traffic flow is affected by means of simulations
 - Identify (new) critical situations and analyse them

Co-funded by the European Union

Andreas Knapp Daimler AG, Group Research and MBC Development andreas.knapp@daimler.com

Felix Fahrenkrog Institut für Kraftfahrzeuge, RWTH Aachen University fahrenkrog@ika.rwth-aachen.de

Adapt<mark>¦</mark>Ve

Automated Driving Applications and Technologies for Intelligent Vehicles

Thank you.