

Automated Driving Applications and Technologies for Intelligent Vehicles

Adrian Zlocki Christian Rösener

Final Event Aachen, Germany 28 June 2017 Key evaluation results

// Automated Driving

// Evaluation of AdaptIVe functions

// Real-traffic

// Test track

// Simulations

User-Related Assessment //

In-Traffic Behaviour

Technical Assessment //

Assessment //

// Evaluation of AdaptIVe functions

// Real-traffic

// Test track

// Simulations

//Technical Assessment - Method

// Technical Assessment - Results

The AdaptIVe Highway-Chauffeur is showing a control capability similar to human driving from euroFOT. Two results stand out:

- Top figure: duration of lane change is much more uniform with automation
- Bottom figure: time headway in vehicle following shows much less variability with automation

// More details in the presentation of Christian Roesener

// User-related Assessment

// Highway

- Method
 - Behavioural observations two observers in the car
 - Logging of driving data e.g. speed, distance, lane keeping

- Key Results (21 persons, Highway-Chauffeur as example)
 - The drivers used the system as it was intended to be used
 - The system affected driving positively in several ways
 - + Better speed adaptation to speed limits and conditions, less speed variations
 - + Better distance keeping ahead
 - + Better lane choice (prescribed use of the right lane)
 - + Better indicator usage
 - + Fewer dangerous lane changes
 - Due to 130 kph system limit, overtaking manoeuvres are longer

// More details in the presentation of András Várhélyi

//In-traffic Assessment - Method

- Research focus:
 - How is the vehicle interacting with other traffic participants?
 - How do other traffic participants react on the (automated) vehicle?

 In-traffic Assessment used generated real-life scenarios with Monte-Carlo simulations

//In-traffic Assessment - Method

// Parking

// Environmental Impact Assessment

Method

- Analysing the required parking space for automated vehicle
- Assumption: If the driver is not in the car, it is possible to park more narrow
 - 1. Parking maneuver analysis to find the optimal trajectory
 - 2. Required parking lot and road width calculation
 - 3. Additional parking space determination

Results

Vehicle Class	Benefit of automated driving
Minis	17%
Upper Class	5%
Average Vehicle	10%

// Safety Impact Assessment - Method & Results

// Identification Top-Scenarios

// Analysis & Projection

	Top 1 Cut-In	Top 2 End of Lane	Top 3 Obstacle in the lane
Expected mean accident reduction rate	-83%	-14%	-40%
Accidents within the operation conditions ¹	72% (92%)	67% (83%)	78% (97%)
Change of accident risk per scenario	-60% (-76%)	-9% (-12%)	-31% (-39%)

3

// More details in the presentation of Felix Fahrenkrog

Adrian Zlocki zlocki@fka.de

Christian Rösener roesener@ika.rwth-aachen.de

Automated Driving Applications and Technologies for Intelligent Vehicles

Thank you.

