

Automated Driving Applications and Technologies for Intelligent Vehicles

Natasha Merat University of Leeds

Overview of the Human Factors Experiments

Final Event Aachen, Germany 29 June 2017

// Main Objective

"Investigate how drivers' intentions and actions should be taken into account in the design of partly and highly automated vehicles"

SAE Levels 2 & 3

//The Team

//SoA and Categorisation of Research Questions

Agent State	Awareness	Arbitration	Action
Drowsiness/ Fatigue	Situation Awareness	Interaction and Design	Ergonomics
Physiological/ Emotional state	Mode Awareness	Meaning and Scheduling	Controllability
Distraction	Role & Task Awareness	Modes and Transitions	
Workload		Modality	
Cultural Differences		Adaptivity	
Acceptance			
Automation State			
Vehicle State			
Environment state			

// Experiments

- 16 simulator studies
- 1 ADAS study for truck drivers
- 1 large web-based survey
- Over 400 car drivers
- 90 truck drivers
- 2743 web-survey respondents
- 17 MAIN Research Questions

// New Concepts, Methodologies and Measures

- Simulating the 'out of the loop' concept
 - Can we achieve it?
 - Where do drivers look during automation?
 - Does this have an effect on their crash propensity?

- Using the Ambient Light Display for driver support at different levels of automation
 - Can we use the driver's peripheral vision to provide information?

// New Concepts, Methodologies and Measures

 How much time do drivers need to prepare for resumption of control?

- Demnächst übernehmen und Spur wechseln

 Baustelle
 2000 m
- What is the optimal degree of information required for transition of control?
- Can an uncertainty signal keep drivers more aware of their surroundings?

// New Concepts, Methodologies and Measures

• Can we provide effective, yet non-intrusive HMI for unpredicted, resumption of control?

 Is there a difference between continuous and discrete interaction for valet parking?

//*Some* of the Findings (Please go to the posters for more details!)

(e.g. touching braking) in littl

But this is *not* and effective d

Louw et al, submitted

Adapt ! Ve

Eye-tracking data can be useful for understanding driver attention during resumption of control

//*Some* of the Findings (Please go to the posters for more details!)

- Engagement in other (2^{ndary}) tasks increased resumption of control from automation
- Ambient Lightm Display can help with perception, comprehension and anticipation of information.

 No major cultural differences, across 12 countries, regarding usefulness of parking HMI

//*Some* of the Findings (Please go to the posters for more details!)

- Enhanced effectiveness of take-over request via:
 - Early take over announcements
 - Presentation of continuous information, regarding remaining time in automated mode
 - Displaying the necessary driving manoeuvre

//*Some* of the findings (have you been to the posters yet? They have biscuits!)

- (Truck) HMI with fewer levels of automation preferred
- Less information on HMI preferred by truck drivers
- Higher traffic density resulted in quicker engagement of automation (Truck)

// Challenges and Next Steps

- Simulators are good for controlled studies but do not tell us about user experience in the real world
- Learning effects can be a problem one failure is enough to change behaviour
- Experiments (what we ask people to do) need to become observations (what they actually do!)
- Difficult to study long-term effects of automation (e.g. fatigue)
- Today's cabs will not tell us about tomorrow's problems
- We do not know much about different age groups and abilities

Natasha Merat n.merat@its.leeds.ac.uk

Adapt ! Ve

Automated Driving Applications and Technologies for Intelligent Vehicles

Thank you.

