

Adapt<mark>/</mark>/Ve

Felix Fahrenkrog

Adapt<mark>/</mark>/Ve

Automated Driving Applications and Technologies for Intelligent Vehicles

Impact Assessment

Final Event Aachen, Germany 29 June 2017

// Research Question

How does automated driving influence road traffic?

// Safety impact assessment

// Enviromental impact assessment

2 // 29 June 2017

// Target Areas

3 // 29 June 2017

AdaptIVe Final Event, Aachen

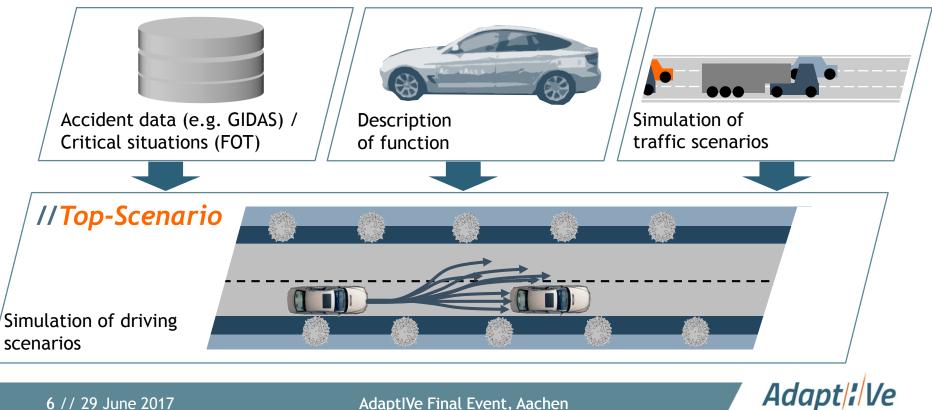
Adapt<mark>/</mark>/Ve

// Safety Impact Assessment

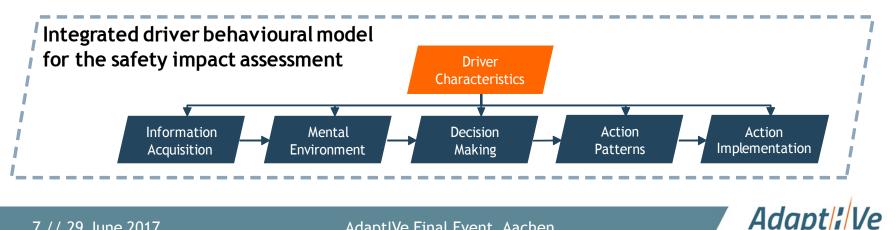
4 / / 29 June 2017

AdaptIVe Final Event, Aachen

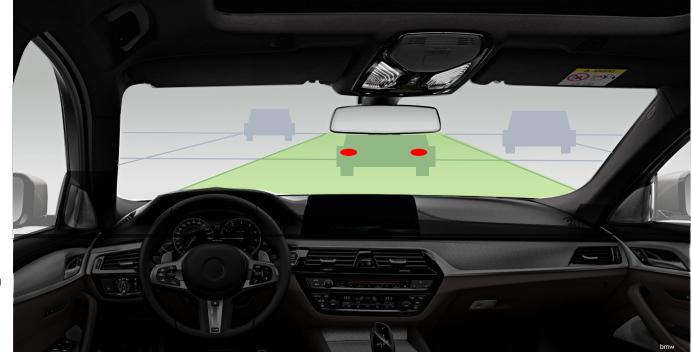
bmw


// Safety Impact Assessment - Methodology

- Challenges:
 - Continuous intervention by automated driving functions
 - // Simulating reconstructed accidents is not
 sufficient; instead traffic scenario should be
 simulated
 - Simulating driver behaviour while manual driving
 - // Adequate driver model is required to consider human errors
 - Implementation of an automated driving function

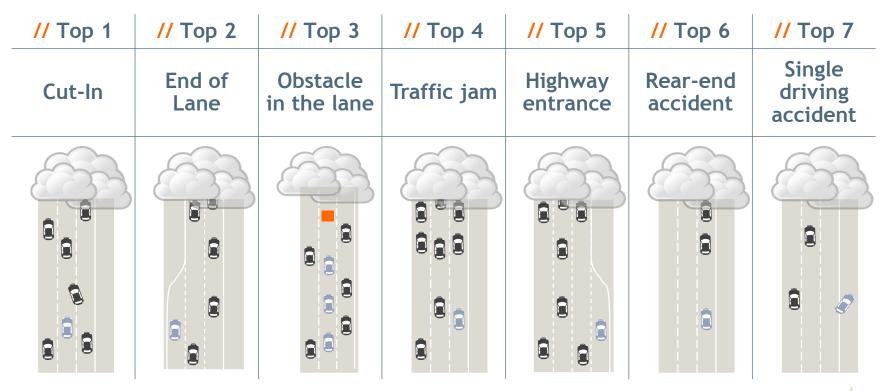

// Safety Impact Assessment - Methodology

6 // 29 June 2017


//Safety Impact Assessment - Driver Model

- Challenge: Simulation of human driving behaviour in the baseline •
- Stochastic Cognitive Model (SCM) is used in the simulation •
- A core aspect of the SCM driver behavioural model is the application of • stochastically methods in order to represent the behaviour of different drivers (e.g. gaze control)

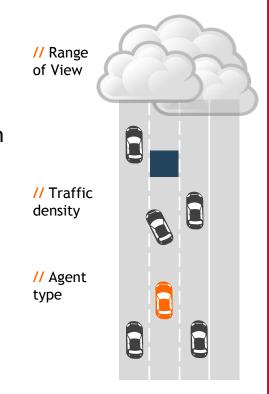
//Safety Impact Assessment - Driver Model


- Objective: realistic implementation of visual perception.
- Definition of different view areas (Areas of Interest -AOI).
- Stochastic view control based on scientifically founded distribution matrix.

Adapt<mark>¦¦</mark>Ve

8 // 29 June 2017

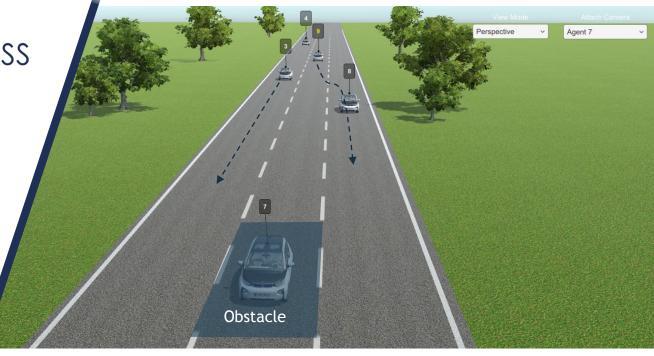
// Safety Impact Assessment - Top Scenarios


Adapt<mark>¦</mark>Ve

9 / / 29 June 2017

//Safety Impact Assessment - Example Obstacle in lane

Setup of the scenario:


- Three lane motorway of 4 km
- The obstacle is placed in the central driving lane at a position of $s_x = 350$ m. Positon can be adjusted
- The surrounding traffic is generated by means of stochastic approaches (start position & characteristics of the driver)
- The relevant vehicles are either driven by the automated driving function or manually (SCM-driver model)

Adap

// Safety Impact Assessment - Simulation tool

11 // 29 June 2017

// Safety Impact Assessment - Results per Top Scenario

• Results per top scenario of an exemplary automated driving function:

	// Top 1 Cut-In	// Top 2 End of Lane	// Top 3 Obstacle in the lane	// Top 4 Traffic jam	// Top 5 Highway entrance	// Top 6 Rear-end accident	// Top 7 Single driving accident ²
Mean determined effect in the simulation	-83%	-14%	-40%	-40%	-49%	-73%	-100%
Accidents within the operation conditions ¹	72%	67%	78%	80%	95%	69%	67%
	(92%)	(83%)	(97%)	(89%)	(95%)	(96%)	(93%)
Expected change in the accident risk per scenario	-60%	-9%	-31%	-32%	-47%	-51%	-67%
	(-76%)	(-12%)	(-39%)	(-36%)	(-47%)	(-70%)	(-93%)

1: Accidents within the operation conditions including accidents at speeds outside operation conditions

2: Determined based on the assumption

12 // 29 June 2017

AdaptIVe Final Event, Aachen

Adap

// Safety Impact Assessment - Results per Top Scenario

• Results per top scenario of an exemplary automated driving function:

	// Тор	1 // Top 2	2 // Top	3 // Top 4	4 // Top	5 // Тор	6 // Top 7	// Not Considered
Accident proportion (Motorway - Germany)	14.5%	1.2%	3.4%	19.7%	1.4%	22.7%	21.8%	15.2%
Determined effect per scenario	-60% (-76%)	-9% (-12%)	-31% (-39%)	-32% (-36%)	-47% (-47%)	-51% (-70%)	-67% (-93%)	0%
Weighted Effect per scenario	-8.7% (-11.1%)	-0.1% (-0.1%)	-1.3% (-1.6%)	-6.3% (-7.0%)	-0.7% (-0.7%)	-11.5% (-16.0%)	-14.6% (-20.3%)	0%
Overall change of the accident risk (Motorway -Germany)		, , , , , , , , , , , , , , , , , , ,		-43% (-57%			,	

¹: Note: Limitation and assumptions of the study (see report) must always be taken into account!

13 // 29 June 2017

AdaptIVe Final Event, Aachen

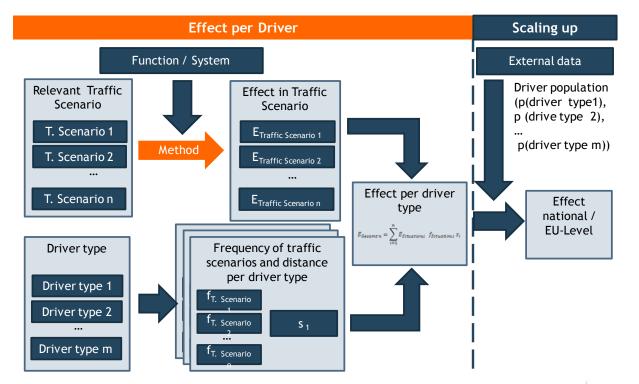
Adapt/

//Safety Impact Assessment - Limitation of study

Open Issues for the assessment:

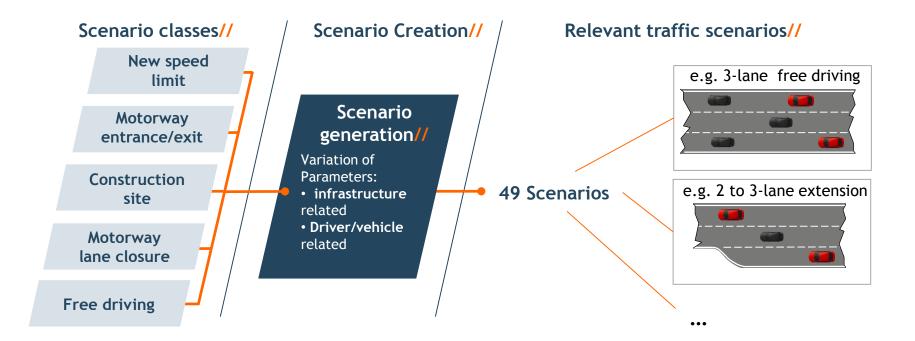
- Situations (→ transition of control) with potentially negative effects are not considered
- Effects along the penetration rate are not considered → limitation of overall effect
- Usage is not considered \rightarrow although the function is available, it will not necessarily used
- Available data → currently, the relevant and available data set (detailed accident data & NDS and FOT data) is quite limited

// Environmental Impact Assessment


15 // 29 June 2017

// Environmental Impact Assessment - Methodology

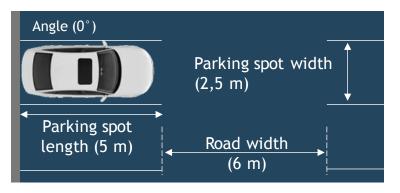
Analysis of the environmental impact with respect to


- Energy demand
- Traffic flow
- Travel time

Consider different driver types

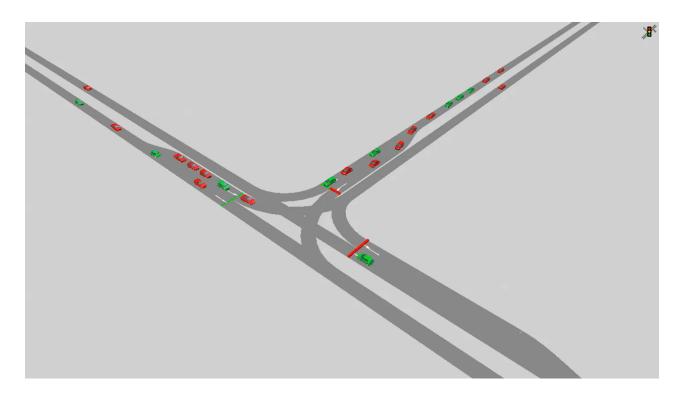
Adapt

//Environmental Impact Assessment - Methodology



17 // 29 June 2017

//Environmental Impact Assessment - Methodology (Parking)


- Analysis of the required parking space for automated vehicle
 - Assumption: If the driver is not in the car, it is possible to park narrower
- Approach: Analysis of parking manoeuver in order to find the optimal trajectory
 - \rightarrow calculated required parking lot and road width
 - \rightarrow determine additional parking space

Vehicle type	Ø Length	Ø Width w	Ø Width w/o		
		mirrors	mirrors		
	[mm]	[mm]	[mm]		
Minis	3409	1872	1622		
Small car	4042	1938	1715		
		• • •	•••		
Family vans	4648	2105	1866		
Utilities	4561	2183	1827		
Average	4329	2019	1785		

Adapt<mark>/</mark>/Ve

// Environmental Impact Assessment - Simulation

Adapt<mark>/</mark>/Ve

19 / / 29 June 2017

// Environmental Impact Assessment - Results

// Motorway

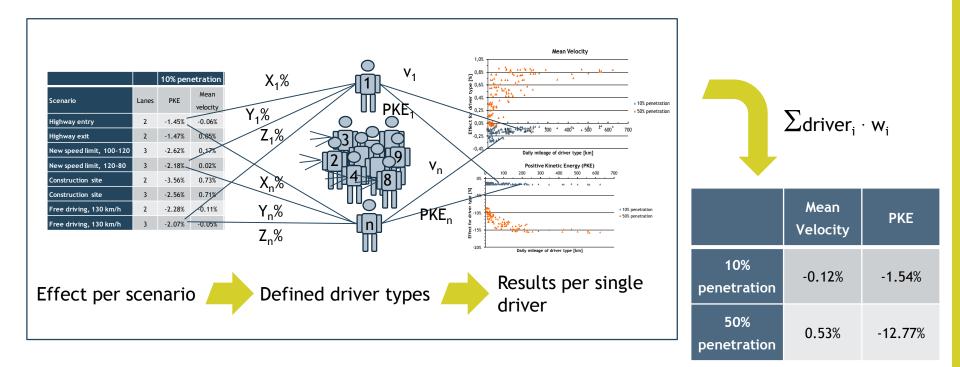
// Urban

•••

•••

наар

•••


•••

ve

		10% pen	etration	on 50% penetration			10% penetration		50% penetration	
Scenario	Lanes	PKE	Mean velocity	PKE	Mean velocity	Scenario	PKE	Mean velocity	PKE	Mean velocity
Highway entry	2	-1.45%	-0.06%	-20.98%	0.61%	4-way-intersection with traffic lights	-6.59%	- 2.92 %	-27.75%	-3.32%
Highway exit	2	-1.47%	0.05%	-17.85%	0.87%	T-intersection with traffic lights	-5.24%	-1.43%	-21.97%	-1.30%
New speed limit, 100-120	3	-2.62%	0.17%	-13.44%	0.51%	New Speed Limit, 30-50	-1.66%	0.04%	-10.80%	0.42%
New speed limit, 120-80	3	-2.18%	0.02%	-12.71%	0.24%	New Speed Limit, 50-70	-1.50%	0.03%	-11.36%	0.40%
Construction site	2	-3.56%	0.73%	-24.36%	6.30%	New Speed Limit, 70-50	-1.50%	0.02%	-11.66%	0.36%
Construction site	3	-2.56%	0.71%	-13.55%	3.00%	New Speed Limit, 50-30	-1.55%	0.03%	-11.13%	0.42%
Free driving, 130 km/h	2	-2.28%	-0.11%	-17.40%	0.51%	Free Driving, 30 km/h	-1.19%	0.14%	-17.25%	1.57%
Free driving, 130 km/h	3	-2.07%	-0.05%	-16.73%	0.83%	Free Driving, 50 km/h	-1.07%	0.12%	-18.88%	1.45%
						Free Driving, 70 km/h	-1.25%	0.10%	-20.10%	1.31%

20 / / 29 June 2017

//Environmental Impact Assessment - Overall Results

21 / / 29 June 2017

AdaptIVe Final Event, Aachen

Adapt/¦/Ve

// Environmental Impact Assessment - Results (Parking)

Angle of parking spot	0°	9°	18°	27°	36°	45°
Minis	17%	17%	17%	17%	17%	17%
Small car	14%	14%	14%	13%	14%	14%
•••						
Utilities	6%	6%	6%	6%	6%	6%
Average	10%	10%	10%	10%	10%	10%
	© ©		Elsen t Elsen t	Barrow and an and a second sec		
	-					

- Example RWTH Aachen University parking garage
- Average scenario: each 22.0 m one additional parking spot
 - Overall 9 additional parking spots (+8.7% parking spots)
 - Row A: +3 parking spaces
 - Row B: +1 parking spaces
 - Row C: +1 parking spaces
 - Row D: +4 parking spaces
- Limitations must be taken into account

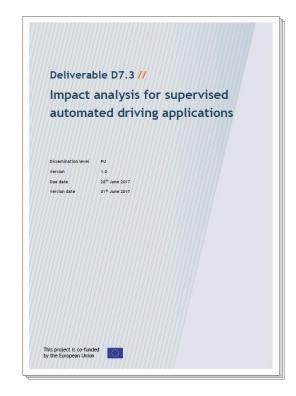
Adapt<mark>/</mark>/Ve

22 // 29 June 2017

//Conclusion

23 // 29 June 2017

// Conclusion


- The shown results are first results for the impact of automated driving based on the available information and knowledge.
- In general the impact of automated driving functions need to be investigated further and in more detail (data, more accurate functions).
- Automated driving functions can provide a benefit in terms of traffic safety and the energy demand.
- Changes in the traffic flow will depend on the penetration rate as well as the applied regulation (\rightarrow distance behaviour).
- Penetration has a significant influence on the achievable benefits.
- Further important factors, like usage of the functions, need also to be addressed in the future.
- The mentioned results are only valid under the given limitations and assumptions, which must always be considered when referring to it.

Adapt<mark>¦</mark>Ve

24 // 29 June 2017

// Deliverable D7.3

- Methodology and Results are provided in Deliverable D7.3 "Impact analysis for supervised automated driving applications"
- Many thanks to all, who have contributed to the impact assessment:
 - Christian Rösener, Felix Fahrenkrog Jan Sauerbier, Lei Wang, Sandra Breunig.

Adapt<mark>/</mark>/Ve

Felix Fahrenkrog

Adapt<mark>/</mark>/Ve

Automated Driving Applications and Technologies for Intelligent Vehicles

Thank you.

