

VOLVO

Adapt<mark>|</mark>!/Ve

Automated Driving Applications and Technologies for Intelligent Vehicles

Emma Johansson

HUMAN FACTORS IN VEHICLE AUTOMATION - Activities in the European project AdaptIVe

Vehicle and Road Automation (VRA) Webinar 10 October 2014

//Outline

- AdaptIVe short overview
- Collaborative automation
- Human Factors challenge
- Work process
- Functional requirements /design guidelines
 - Examples on driver state
- Outlook

// 10th of October 2014

- Duration: JANUARY 2014 JUNE 2017
- Coordinator: VOLKSWAGEN GROUP RESEARCH, ARIA ETEMAD
- 30 partners: FRANCE, GERMANY, GREECE, ITALY, SPAIN, SWEDEN, THE NETHERLANDS, UK

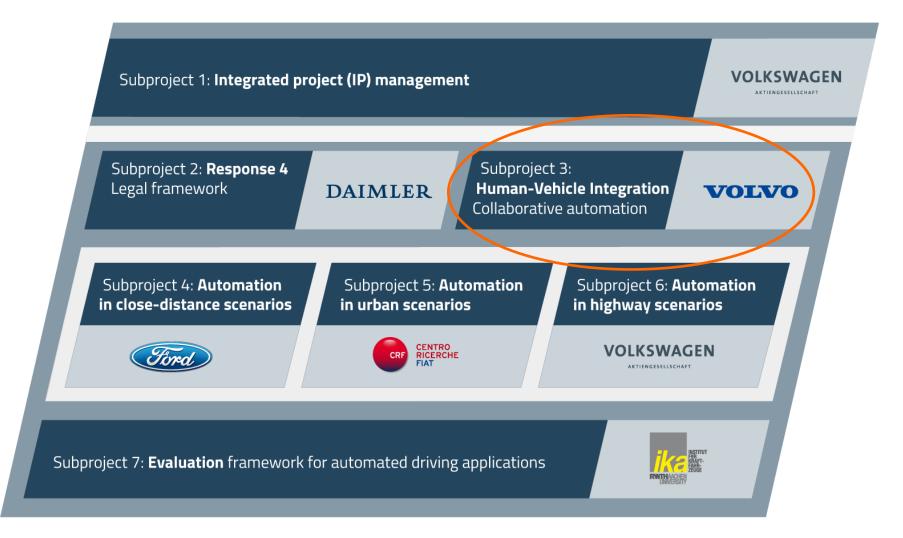
VRA Webinar

Adapt<mark>¦</mark>Ve

General objectives

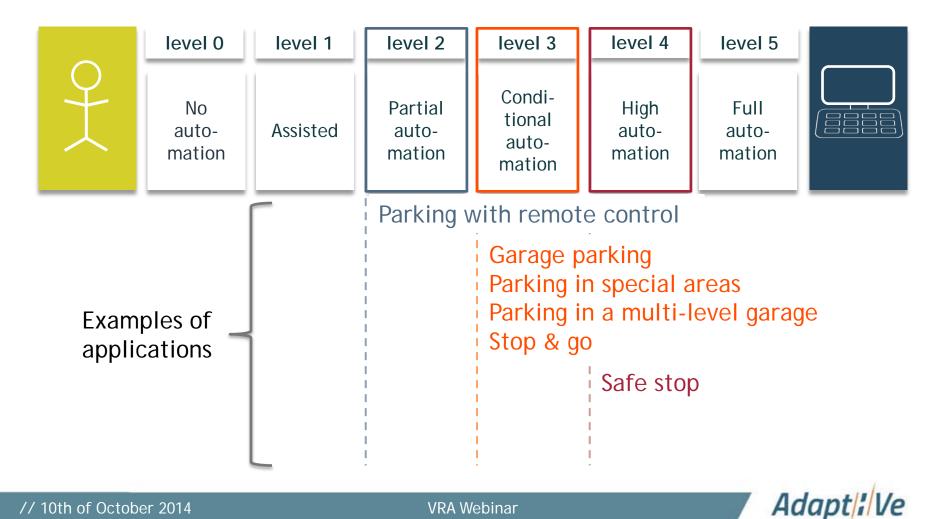
 Widespread application of automated driving to improve traffic safety, efficiency and comfort

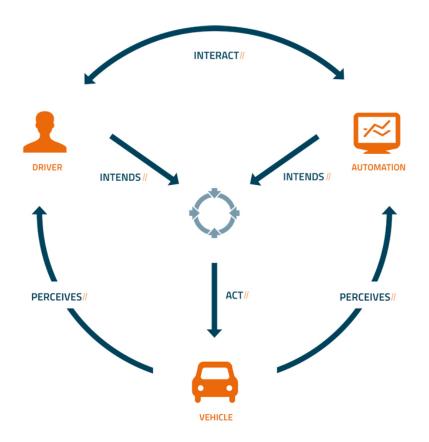
- 1. Automation in different environments and different automation levels.
- 2. Enhanced perception performance
- 3. Driver-vehicle interaction; collaborative automation.
- 4. Evaluation methodologies. Assess the impact of automated driving on European road transport.
- 5. Legal framework


Demonstrator vehicles and general use cases

Adapt/:/Ve

// 10th of October 2014


Subproject structure


// 10th of October 2014

Targeted automation levels (according to SAE's draft levels)

// Human Vehicle Integration - collaborative automation Subproject 3

- Collaborative automation:
 - implies the idea of complementary skills of human and automation that are used together to achieve one common goal.
 - The basis is continuous communication and interaction between the two partners, with regard to respective intentions, abilities, actions and limitations.

// Human Factors challenge

- So far, there is **no fail proof software**
- To replace the human behind the wheel being with a machine (designed by another human) only works if the task environment is very static and predictable and a priori controllable...
- So what to do with the driver?

// Human Factors challenge

Option 1: The driver monitors the automated control system

- Unfortunately, humans make poor monitors
- Vigilance problems etc.
- Ironically, overreliance increases if the system has high reliability and low failure rate

Option 2: The driver act as a back-up to the automation

- Controllers need manual and cognitive skills to function. In absence of practice these skills degrade
- Out of the loop

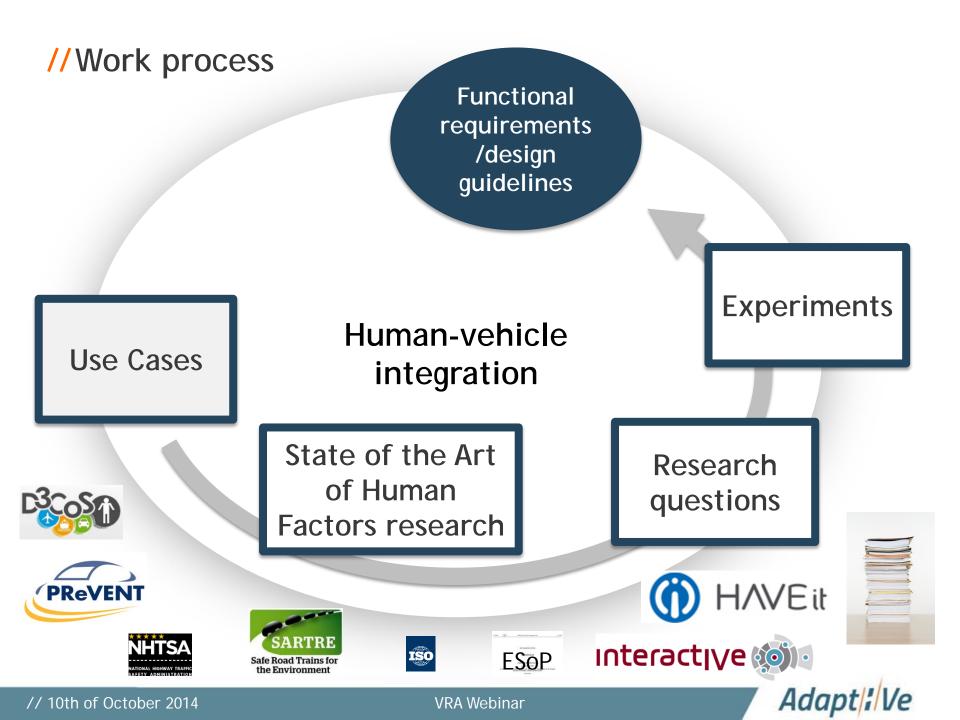
//Which are the best alternative designs to avoid a passive driver?

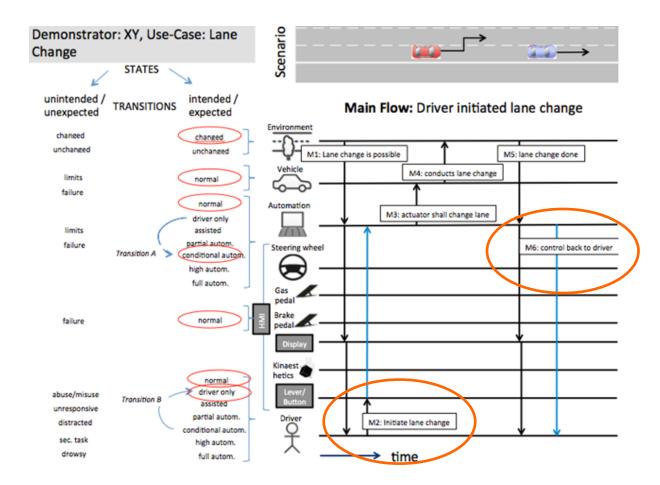
?

// 10th of October 2014

// Human Factors challenge

Option 3: The human and automation can both participate in the control through some sort of partnership


- How do we find the correct partnership?
- Who will have the final authority if the driver and computer disagree?
- Automating part of the tasks might make the more difficult tasks even harder for the driver.


//How much knowledge can be transferred from other domains to vehicle automation?

?

Adapt/:/Ve

//Use Cases

// 10th of October 2014

// Functional requirements /design guidelines

•

- 'Awareness problems'
 - Perception
 - Comprehension
 - Mode awareness
 - Attention
 - Beliefs
 - ...

- 'Intention/decision problems'
 - Goal setting
 - In-vehicle tasks/task allocation
 - Responsibility

. . .

Unintended use (misuse?)

- 'Interaction problems'
 - Visual, auditive, haptic, kinestetic communication, interaction, information, confirmation
 - Feedback
 - Arbitration
 - Mental models
 - Transition

- 'Agent state problems'
 - State (failure, limits)
 - Environmental conditions
 - Drowsiness/fatigue
 - Workload
 - Knowledge/experience

- 'Action problems'
 - Physical constraints
 - Motoric constraints
 - Lack of skills
 - Controllability

*Categorization from D3COS

// 10th of October 2014

VRA Webinar

interactIVe and HAVEit

Adapt Ve

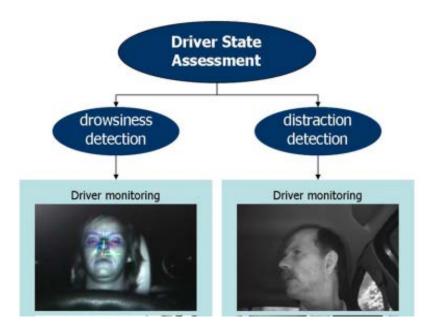
HAVEit

*Alot of

input from

// Functional requirements /design guidelines (examples)

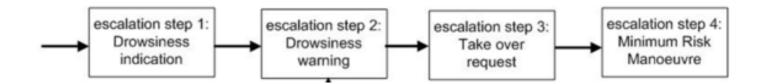
- Agent-state-related problem; driver state
 - An inattentive driver (e.g. drowsy or engaged in non-driving related tasks) will need longer or will even be unable to react to a systeminitiated transition; the system need to know this limitation
 - In order to assess whether the driver will be able to react appropriately to a system-initiated transition a driver state monitoring component must be implemented in the vehicle



*based on work in e.g. HAVEit

// Functional requirements /design guidelines (examples)

- Agent-state-related problem; driver state
 - Driver state assessment should be able to both detect short-term inattention, such as engagement with non-driving related tasks as well as long-term inattention (such as drowsiness, driving under alcohol, other substances etc.)


*based on work in e.g. HAVEit

// 10th of October 2014

//Functional requirements /design guidelines (examples)

- Agent-state-related problem; driver state, transition:
 - In case of an impaired driver state a stepwise escalation scheme should be implemented to bring the driver back into the loop

*based on work in e.g. HAVEit

//Functional requirements /design guidelines (examples)

- Agent-state-related problem; driver state, transition:
 - In a time-critical situation the driver must be brought back to the loop quicker compared to a non-critical situation; the higher the automation level the more time can be given to bring the driver back to the loop
 - the escalation scheme should be adaptable to the criticality of the situation and to the current automation mode

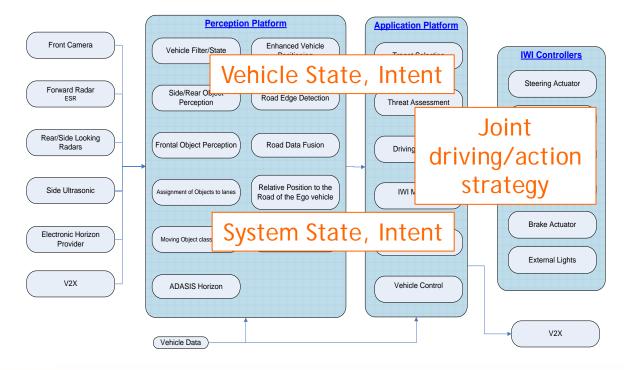
	level 0	level 1	level 2	level 3	level 4	level 5	
Ŷ	No auto- mation	Assisted	Partial auto- mation	Condi- tional auto- mation	High auto- mation	Full auto- mation	

*based on work in e.g. HAVEit

//Functional requirements /design guidelines (examples)

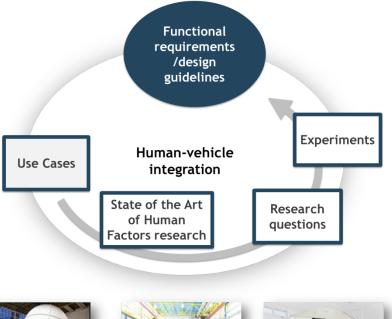
- Agent-state-related problem; driver state, transition:
 - a driver could probably use the system in a unintended way, e.g. to sleep.
 - in case of unintended use* the highly automated mode should be disabled, however still preventing the driver from safety-critical situations

*Unintended use, misuse, abuse: We need to define unintended use and create a design that makes the intended use clear and will avoid obvious misuse.



*based on work in e.g. HAVEit

// Outlook


- System need to be designed based on *both* automation's and driver's state, intent and actions
- Human Factors work have implication on how to design sensor/perception layer, application/function layer as well as interaction/output layers

// Outlook

- Create first version of Functional req./guidelines based on current SoA (main input from HAVEit, interactiVe, H-mode)
- 2. Collect research questions
- 3. Run experiments
 - 16 exp between end of 2014→beginning of 2016)
- Update requirements → input to design of demonstrator vehicles + beyond AdaptIVe

FORD fixed based sim.

DLR driving sim.

VOLVO ATR truck sim.

VCC fixed based sim.

DLR FASCar

//Which research questions should be the most important ones?

?

// 10th of October 2014

//Outlook - Experiments (examples of categories)

Driver in the loop	 Situation awareness Mode awareness 	 Managing system limits/ failures Controllability
Shared control	 Driver and automation act in parallel? On different levels of control? 	 System and driver initiated Intended and unintended Transitions
Driver attention state	 Secondary-task engagement Drowsiness 	Modality and timing of information Interface design

//SP3 team

- VOLVO GROUP Trucks Technology
 - Emma Johansson, Pontus Larsson
- FORD
 - Stefan Wolter, Martin Brockmann
- VOLVO CARS (VCC)
 - Mikael Ljung Aust, Trent Victor, Malin Farmasson
- DLR
 - Johann Kelsch, Marc Dziennus
- University of LEEDS (LEEDS)
 - Natasha Merat, Georgios
 Kountouriotis, Tyron Louw
- WIVW
 - Nadja Schömig, Katharina Wiedemann

VOLVO

(SP3 partners have experience from H-mode, aktiv, HAVEit, interactIVe, SARTRE, D3CoS, CityMobil and our work in SP3 very much starts from this)

Co-funded by the European Union

Adapt<mark>¦</mark>Ve

Automated Driving Applications and Technologies for Intelligent Vehicles

Thank you.

Emma Johansson, M.Sc. Volvo Group Trucks Technology emma.johansson@volvo.com +46(0)31 322 85 79