“From Advanced Active Safety Systems to Automated Systems: interactive and Adaptive

Dr. Angelos Amditis
Research Director I-Sense, ICCS
Contents

- Introduction
 - Motivation
 - Levels of automation
 - Evolution of active safety systems + research activity
 - Challenges
- interactIVe: Advanced active safety systems
 - Lessons learned
- AdaptIVe: Supervised automated driving
 - Ongoing work
- Conclusions
What are the possible benefits of automated driving?

- Assist the driver in monotonous and demanding tasks
- Solve traffic jams by increased outflow
- Increase traffic stability
- Increase in traffic safety (VRU’s too)
- Reduction in congestion (optimal distribution over the network)
- Improved energy efficiency
- Improved travel experience

Safety First

Our Aim
Zero Accidents
How automated driving is defined

(Source: SAE standard (J3016, Jan 2014))

- **Level 0 – No Automation**: the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems.

- **Level 1 – Driver Assistance**: the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task.

- **Level 2 – Partial Automation**: the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task.

- **Level 3 – Conditional Automation**: the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene.

- **Level 4 – High Automation**: the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene.

- **Level 5 – Full Automation**: the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver.
Levels of Automation

- Assisted simple scenarios
- Assisted complex scenarios
- Partially automated: Lower speed, simple scenarios
- Highly automated: Lower speed, simple scenarios
- Fully automated: Lower speed, simple scenarios

Sources: BASt, SAE
Evolution of active safety systems

Warning systems
- collision
- lane departure

Active intervention
- lane keeping,
- longitudinal & lateral collision avoidance

Automated functions
- parking

ABS

ACC, Blind spot detection, ESP
Pole 1

• In your opinion, can automated driving systems decrease tragedies on the road?
 - yes
 - no

• Should the scope of fully automated driving lie within limited driving areas (e.g. airports, garages)?
 - yes
 - no
Active Safety Research Activity (EU)

- PReVENT: Advanced ADAS
- SAFESPOT: Cooperative systems
- HAVEit: Highly automated driving
- interactlVe: Active intervention

Timeline:
- 2008: V2V & V2I
- 2010: Cooperative Warning
- 2012: VSAFESPOT
- 2013: HAVEit
Automation Research Activity (EU)

SENSOR SET EMPLOYED:
- Radar (short/long range), Camera (mono-, stereo-), Laser Scanner, Ultrasonic, INU
- Digital maps
- Wireless communication (V2I, V2V)
Automated & Connected Driving

- active interventions
- continuous support
- transitions among automation levels

...level of automation is set dynamically

- cooperative support of neighbouring vehicles
- cooperative support of the infrastructure

...resilient to different types of system and human failure
Challenges

Real-time environment perception
- **Reliability** of sensing has to be *quantified*;
- Reliability has to be *improved* for real life conditions (e.g. adverse weather conditions + complex traffic scenarios);

Automation control strategies
- Up to now focus on longitudinal control; **Lateral control** systems are predominantly advisory
- Complex use cases like *overtaking, lane merging* and *crossroad* entering/exiting need more investigation

Human factors
- Driver becomes a *supervisor* of a system instead of a *manual controller* of the vehicle
- In partial and high automation, a capable driver is still required to *resume* manual *control*
- Profound insight is needed into the *determinants* of the quality of the *interaction of the driver with the automated vehicle*
- Most knowledge in relation to driver behavior is based on *driving simulator studies* and not *real traffic conditions*
Deployment barriers I

- enhanced perception techniques, reliable VRU detection, collaboration with the infrastructure
- high cost of the sensors required for the full environmental perception
- immature testing and evaluation in unconstrained real conditions
- information warning and intervention strategies, mode transition, driver-vehicle-infrastructure collaboration
- integration issues, open platforms, data handling, ...
Deployment barriers II

- Legal and regulatory framework that implies that the driver must always be in full control of the vehicle.
- Vienna convention terms “driver” and “control” allow for open interpretations (CARS Stanford study).
- A recent amendment has been made this year by the U.N. Working Party on Road Traffic Safety which would allow a vehicle to indeed drive itself, as long as the system “can be overridden or switched off by the driver”.

Legal & societal

- Identify and gather relevant stakeholders (incl. governments) and present the benefits automation brings in transport, financial planning.
- User acceptance, education/training, benefits/incentives, campaigns, workshops.
Pole 2

• Which of the below deployment barriers do you consider as the most important?

- Sensor set cost
- Technical immaturity of active safety systems
- Legal and liability issues
A closer look in...

(2010-2013)
Overview

Current systems:
- independent functions for a dedicated task
- multiple expensive sensors

interactIVe:
- Active intervention poses “hard” real-time requirements for application data processing & sensor fusion modules
- Design of a unified perception framework for multiple safety applications
 - Different sensor types and products attached based on the plug-in concept
- Advance research on path control algorithms for active collision avoidance and mitigation
- Advance research on IWI strategies and assistance ↔ intervention transition modes
Functions

- **Continuous driver support**
 - Continuous Support
 - Curve Speed Control
 - Enhanced Dynamic Pass Predictor
 - Safe Cruise

- **Collision avoidance**
 - Lane Change Collision Avoidance & Side Impact Avoidance
 - Oncoming Vehicle Collision Avoidance/Mitigation
 - Rear End Collision Avoidance
 - Run-off Road Prevention

- **Collision mitigation**
 - Collision Mitigation System
 - Emergency Steer Assist
Functions’ features

- Oncoming vehicle collision avoidance / mitigation
- Side impact avoidance (depicted above):
 - Lane Change Collision avoidance
 - Rear end collision avoidance
 - Run off road prevention (curve)
- Automated emergency braking
- Emergency Steer Assist

Partial + conditional automation (SAE)

- Assisted mode: adapts its speed automatically to the curve radius ahead.
- Auto-braking+
 - Evasive maneuvre
 - Soft feedback on the steering wheel is provided supported by corrective steering
 - Optimized point of impact
 - Any braking and/or steering intervention of the function can be overridden by the driver
Other automation areas covered

- **IWI strategies provide**
 - sequence of interaction
 - automation scale
 ...which allow the integration of a high number of ADAS

- **Tests on System – User shared control** concept in highway, rural and urban environments with emphasis on haptic feedback

- **Legal aspects study**
 - vehicle type-approval for interactive functions according to relevant UN ECE
 - legal framework on EU-level

The Driver Override Detection module monitors the driver actions and decides if the driver is considered to be performing an action out of a predefined set that includes braking, steering, manoeuvring and accelerating.
Lessons learned I

- Often drivers start a reflexive reaction by counteracting the intervention to some extent:
 - Active interventions, especially when steering and braking are combined, requires further investigations with a larger set of subjects and situations.
 - The drivers should be allowed to overrule the functions. Which strategy is best depends on the function.
 - IWI strategies should ensure a smooth transition with regard to the different levels of human and system control. It appears convenient to group automation functions into modes of increasing degree of automation, as well as to the type of support and direction.
Lessons learned II

- Obtain near real time performance
 - **Real time OS + object-level fusion** (need for new sensors)
- Extensive evaluation of RunOfRoadPrevention
 - **Need for** common groundtruth data such as *road edge annotations*
- Longitudinal and lateral **optimal control models** for understanding driver’s intentions can proliferate from *cognitive science based driver models*
- A very high reliability is needed for the **lane change manoeuvre** to ensure that the adjacent lane is free. Also, more efforts are needed to improve the **estimate of the vehicle position**, e.g. by implementing all the available signals and fully exploiting the GNSS techniques
Lessons learned III
Pole 3

• Which of the following systems would you care to purchase for your vehicle?

- Oncoming vehicle collision avoidance
- Rear-end collision avoidance
- Run-off road prevention
- Blind spot warning
- Collision mitigation system
A closer look in…

Adaptive
Automated Driving

Conception

...level of automation can be set dynamically

- Perception in Complex Scenarios
- Collaborative Control
- Resilient Behaviour
- Communication (V2V/V2I)
- Complex Scenarios
- Driver Monitoring
- Evaluation Methods
- Legal Aspects
- System
- Vehicle
- World
- Driver
Application domain

- suited for **mixed traffic**
- **real world** complex environments
- provide **adaptive support** based on the driving task demand (bidirectional V2V also included)
- design “take over requests” based on system and driver state
- deployable in a short to medium time
Automation concept

Driver in the loop
- No significant change with respect to existing driver assistance systems

Driver out of the loop
- Not in accordance with regulatory law (Vienna Convention, national road law)
- Extra risk with respect to product liability ➔ need for action
Features (1/2)

- Supervised automated driving deployed into **assistance**, **partial**, **conditional** and **high** automation
 - advanced parking applications;
 - stop&go functionality in high traffic/slow speeds

- **Full** automation will be studied for **special** situations:
 - return to a minimal risk condition;

- **Controlled and graceful degradation** from high to partial automation and from partial automation to driver assistance will be exploited as a strategy to manage complex scenarios in a robust and safe way.
Pole 4

• What is the best strategy for increasing user confidence on a mixed-automation system

- Design that promotes resilience to different human failure or system failure errors (including automatic return to a minimal risk condition)
- System-User shared control concept with graceful transitions among different automation modes
- User should be always able to override the system
Features (2/2)

New features

• suited for **mixed traffic**
• **real world** complex environments
• provide **adaptive support** based on the driving task demand (bidirectional **V2V** also included)
• **design “take over requests”** based on system and driver state

→ ...design and develop solutions for the automation of vehicles that will become **deployable in a short to medium time frame** in new vehicle models
Pole 5

• How close are we to sensor fusion systems that can adapt their detection resolution based on the dynamic context of the road scene?
 - 1-2 years
 - 4-5 years
 - more than 5 years
Scenarios overview

- Close distance scenarios
 - Automated parking in
 - Private areas (dwellings, large parking garages, etc.)
 - Outdoor environments (street side, parking lots, etc.)
 - Construction site assistant
 - Reverse manoeuvring in controlled environments

- Urban scenarios
 - Urban Speed and Headway Control (longitudinal)
 - Full Vehicle Control in urban traffic (longitudinal and lateral)

- Highway scenarios
 - Enter / Exit highway
 - Driving in traffic jam
 - Following lane
 - Lane Change & Overtaking
 - Danger spot intervention

- Common
 - Stop & go
 - Minimum risk manoeuvre
Functions classification (ongoing work)

- Classification by level of automation and speed is not sufficient for further work
- Additional parameters are needed (see example aside)
- Collect and structure parameters, limit to essentially needed ones
Pole 6

• In which scenarios do you think highly automated functions could help your everyday driving the most?

puted scenarios

- highway scenarios
- inside city scenarios (e.g. crossroads)
- parking
Legal issues (ongoing work)

- Cover relevant legal areas for industry
- Assess national laws for main target markets (Europe and overseas)
- Need for harmonization
- Built on function classification

Which laws and regulations have to be changed?

<table>
<thead>
<tr>
<th>Vienna Convention</th>
<th>National Regulatory Law</th>
<th>Homologation -> UNECE</th>
<th>Liability</th>
<th>Data privacy and data security</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Product liability/tort law</td>
<td>Ownership, Use, Tampering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Criminal liability</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- New active safety / automation functions need to be verified:
 - from legal perspective
 - from functional safety perspective
 - from human factors perspective
- Testing protocols and ground truth data are crucial!

Image source: T. Gasser 2012 (BASt)
Thank you for your attention!

Dr. Angelos Amditis
Research Director ICCS
SMTP a.amditis@iccs.gr
TEL +30 210 772 2398

http://i-sense.iccs.gr/

VRA.info@mail.ertico.com
VRA Tools: Website, Wiki and Social media

Website:
www.vra-net.eu

Informations about VRA activities i.e. AWG, Trilateral, concertations, events, etc

Twitter:
@info_vra

Twitter: for general information about vehicle automation news

Wiki:
www.vra-net.eu/wiki

A shared resource for road vehicle automation activities around the world.

40 projects in the catalogue with Abstract, Contact point, Website, Sponsor, Budget/funding, Outcome...

Webinar series

Webinar series on Vehicle and Road Automation. Open to Volunteers.